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Deriving Vertices, Shape Functions for Elliptic
Duct Geometry and Verified Two Verification Con-
ditions

Dr. P. Reddaiah, Prof. D.R.V. Prasada Rao

Abstract— In this paper we derived vertices for elliptic duct geometry and derived shape functions for elliptic duct geometry and verified
the conditions that sum of all the shape functions is equal to one and each shape function has a value of one at its own node and zero at

the other nodes.

Index Terms—Shape functions, elliptic duct geometry, Vertices.

1 INTRODUCTION

One of the powerful methods to analyse and understand
any real phenomenon is to formulate the best suited ma-
thematical model based on certain hypothesis like conti-
nuum hypothesis etc., which can can be solved making use of
either exact methods or possible approximate methods. The
solvability of the boundary value problem depends on the
nature of the equation as well as the shape of the boundaries
involved [2]. Among the different numerical techniques, the
variational methods, weighted residual methods and finite
difference methods, finite element methods are quite popular.
Some standard finite element books are
[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18].

2 GEOMETRICAL DESCRIPTION

The Cartesian system is chosen with origin on the central axis
of the duct and the axis O(x", y") are parallel to its major axes
of its crosssection shown in schematic diagram of elliptic
duct.We divide the domain into sub-domains of our choice.

The sub-domains may be lines or triangles or rectangles etc,

depending on the boundary of the configuration.This division
of the domain is usually known as mesh generation and each
sub-domain is called an element of the mesh. Some of the
elements may be of different shape compare to the rest in the
mesh, how ever care should be taken that all the elements
have known geometrical shapes. Also the number of elements
involved differ from problem to problem and depends on the-
percentage of accuracy of the solution. We analyze the
convective heat and mass transfer flow of a viscous, incom-

pressi
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ble fluid through a porous medium in an elliptic duct. The
flow being symmetric with respect to the vertical diameter
x=0, theanalysis is carried out in the right semicircular duct.
For computation purpose we descritized the domain into 14
triangular elements and each triangular element is 6 noded.
Also total number of nodes in right semicircular duct is 39
nodes.

Fig.1 Schematic diagram of Elliptic Duct
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(I) Deriving Vertices for Elliptic Duct Geometry
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Fig. 2 Quarter Ellipse Midpoint formula for (x,,y,) and (x,,Y,)
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At

center of the ellipse vertex is (0,0) and the vertex along y-axis
is (0,h) and (0,-h)

ment 11 (6 noded)
In Schematic diagram of elliptic duct, length of right

semi Circular duct along x-axis is 1 i.e., a=1

Length of right semi circular duct along y-axis is h i.e., b=h.

Ellipse equation (Xl, yl) (X ) y2)
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Mid Point of (0,0) and (0,h) is (O,g)j
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Shape function formulae for six noded
triangular element

r11 p*(2*p-1) g =q*(2*q-1)
Q =r*(2*r-1) Q:4*D*0|

n =4*q*r g:4*p*r
Where

p= ((>2<*>3/—>3<*32/)+x

q:= (O y-x*y) +x*(y-y) +
1 3 1

3

y*(x-x))/ Det

r=((x*y-x*y)+x*(y-y)+ y*(x—x))/ Det
15 2 1 1 2 2 1

Do[Print[Si = ri\],{i,l, 6}]
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implify[s+ S+ S+ S+ S+
SImpliffg+g++3++9

Output
1
(IV). Verification:Each shape function

has a value of one at its own node
and zero at the other nodes

) 1 h
(i) In Element 11 at the vertex (iNode 1)

Substituting x::%, y:= —2 in equations

(2), (3), (4), (5), (6) and (7)

h hx . 3
2002y
URLR NS B

h v3h , 143
A (=
B T

1
+
4 4 2 2 h /3h

h by h hx 3

O S L A A

4 h /3h.2
(—24’7)

h hx y,, h Bh 1 43
s Ay D0 Y
5 h /3h,2
)

h hx , 3 h V3h , 1 43

3
o G Y
6 h, 3hy2

)

Simplify[§] Simplify[g] Simplify[g]
Simplify[g] Simplify[g] Simplify[g]

h

1
Output for element at the vertex (=,——)

1 2
0
0
0
0
0

3 h
(ii) In Element 11 at the vertex ((‘i"\é;e 2)5)
(*Node 2*)

Ne

Substituting x::T, y.= —g in equations
(2), (3). (4), (5), (6) and (7)

Simplify[ﬂ Simplify[§] Simplify[g]
Simplify[i] Simplify[g] Simplify[g]

NG

Output for element at the vertex (—3 , —E)
0 2 2
1
0
0
0
0

(iii) In Element 6 at the vertex (1,0) (Node 3)
Substituting x:=1, y:=0 in equations
(2), (3), (4), (5), (6) and (7)

Simplify[ﬂ Simplify[g] Simplify[g]

Simplify[i] Simplify[g] Simplify[g]

Output for element at the vertex (1,0)
0

0
1
0
0
0
(iv) In Element 11 at the vertex (| +4 3 _g)

1+43 _'h
’ y-_ -

Substituting x:= i

wsere 20l equations (2), (3), (4), (5), (6) and (7)
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Output for element at the vertex (+T\/§ , —g)
0
0
0
1
0
0
(v) In Element 11 at the vertex (l(]ﬁ\/%:g')%, —2)
Substituting x::@, y.= h in
4 4
equations (2), (3), (4), (5), (6) and (7)
Simplify[i] Simplify[g] Simplify[g]
Simplify[i] Simplify[.:,] Simplify[g]
Output for element at the vertex (@ = 2)

o= oo oo

3 h
(vi) In Element 11 at the vertex (I(Izde_ bI )

Substituting x::%, y::h%@h in

equations (2), (3), (4), (5), (6) and (7)
Simplify[§] Simplify[.z,] Simplify[g]
Simplify[i] Simplify[g] Simplify[g]

Output for element at the vertex (E , —D)
0 4 4
0

0

0

0

1

3. CONCLUSIONS

1. Derived Vertices for Elliptic Duct Geometry

2. Derived Shape Functions for Elliptic Duct Geometry

3.Verified the condition that Sum of all the Shape
functions is equal to one

4. Verified the condition that each shape function
has a value of one at its own node and zero at
the other nodes.
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